MCM-41-SO₃H as a Nanoreactor for the One-Pot, Solvent-Free Synthesis of 1,8-Dioxo-9-aryl Decahydroacridines

Shahnaz Rostamizadeh,* Asiyeh Amirahmadi, Nasrin Shadjou, and Ali M. Amani

Department of Chemistry, K. N. Toosi University of Technology, Tehran, Iran *E-mail: rostamizadeh@hotmail.com Received April 23, 2010 DOI 10.1002/jhet.692 Published online 13 October 2011 in Wiley Online Library (wileyonlinelibrary.com).

One-pot four-component synthesis of 1,8-dioxo-9-aryl decahydroacridines in solvent-free condition was efficiently performed in the presence of MCM-41-SO₃H as a nanocatalyst and nanoreactor in good yields. The method provides several advantages such as low cost, operational and experimental simplicity, high yields, and short reaction times.

J. Heterocyclic Chem., 49, 111 (2012).

INTRODUCTION

1,8-Dioxo-9-aryl decahydroacridines and their derivatives are well-known polyfunctionalized 1,4-dihydropyridine derivatives that are widely prescribed as calcium channel blockers and used for the treatment of hypertension and defibrillation [1]. In addition, acridines are important compounds reported to have antitumor properties [2]. Reportedly, the conventional synthesis of 1,4-dihydropyridine derivatives was performed in organic solvents such as HOAc [3], CH₃CN [4], DMF [5], and water [6]. There has been considerable interest for further research toward simple procedure, low-catalyst loading, and using different substrates for the synthesis of 1,8-dioxo-9-aryl decahydroacridines.

In recent years, more attractive possibilities have been arisen by the development of various new silica materials with ordered structure [7]. One of the best-known examples is MCM-41, which is a structurally well-ordered mesoporous material with a narrow pore size distribution between 1.5 and 10 nm, and a very high-surface area up to $1500 \text{ m}^2 \text{ g}^{-1}$ [8]. It has been proven that Si-MCM-41 lacks Brönsted acid sites and exhibits only weak hydrogen-bonding-type sites [9,10]. An additional possibility to develop acidic solids is the modification of the surface of suitable supporting materials, as the chemical functionalities of these materials can be uniformly modified by covalent anchoring of different organic moieties [11]. Although several types of solid sulfonic acids have been created in recent years, there have been only a few reports about their applications as catalyst in chemical transformations. Furthermore, to the best of our knowledge, there is no report on the use of these materials as nanocatalysts in the synthesis of 1,8dioxo decahydroacridines.

In continuation of our work to develop new and ecofriendly synthetic methodologies toward different heterocyclic compounds [12], herein, we report a novel, green, facile, and an efficient one-pot method for the synthesis of 1,8-dioxo-9-aryl decahydroacridines derivatives from readily available starting materials, dimedone, ammonium acetate, and an aromatic aldehyde in the presence of MCM-41-SO₃H as a nanoctalyst under solvent-free conditions. (Scheme 1)

RESULTS AND DISCUSSION

Compared with known methods, our procedure is representing an expedient method for certain acridinedione derivatives with new application for a catalyst that has not been applied for this purpose till now. Additionally, the work covers today's basic trends in chemistry, such as environmentally benign systems and economical approaches with short workup procedures and higher yields.

Vol 49

Scheme 1. Four-component one-step synthesis of 1,8-dioxo-9-aryl decahydroacridines.

During our investigation, at first, we chose 4-chloro-

benzaldehyde (1 mmol), dimedone (2 mmol), and am-

monium acetate (3 mmol) under solvent-free conditions

as model reactants and examined the effect of the

amount of MCM-41-SO₃H, in which the optimum

hydroacridines in the presence of catalyst (Table 2). According to our findings, solvent-free conditions gave

To evaluate the effect of solvent, we examined different solvents for the synthesis of 1,8-dioxo-9-aryl deca-

Subsequently, to optimize the reaction temperature, a

mixture of 4-chlorobenzaldehyde (1 mmol), dimedone

(2 mmol), ammonium acetate (3 mmol), and MCM-41-

SO₃H (0.005 g) were mixed and heated in a paraffin

bath at different temperature (Table 3). According to the

min and no by-product was observed by TLC analysis.

The reaction worked well with electron-withdrawing

(Cl, CN) as well as electron-donating (Me, MeO) groups, giving various acridine derivatives in 60–98%

yields. As shown in Table 4, the method is general and

done with 1 mmol of an aldehyde as well as the reaction

of 1 mmol dimedone with an ammonium acetate resulted

in the formation of chalcone (1) and enamine (2) inside

the nanocatalyst channels. Then, together with, the inher-

It seems that at first the reaction of 1 mmol of dime-

All of the reactions were carried out within 10-110

data, the optimum temperature was selected as 110°C.

amount of catalyst was 0.005 g as shown in Table 1.

the best result for this transformation.

includes a variety of functional groups.

 Table 2

 The effect of the solvent for the synthesis of 4k in the presence of 0.005-g catalyst.

Solvent	Time (min)	Yield (%)
EtOH (reflux)	140	85
CH ₃ CN (reflux)	130	70
H ₂ O (reflux)	195	79
Solvent free	10	98

ent Brönsted acidity of $-SO_3H$ groups, which are capable of bonding with the carbonyl oxygen of the chalcone, generation of ionic intermediates is assisted by activation of the reactants. In other words, ionic intermediates are generated inside the nanoreactor by sufficient energy released during the collapse and strong polarity of the $-SO_3H$ groups. Second, the Michael addition of the enamine to the chalcone leads to the formation of intermediate (3). Finally, ring closure, together with water, elimination gives the product (4). Therefore, under this reaction condition and by using this nanocatalyst, the reaction rates and yields are enhanced. (Scheme 2).

CONCLUSION

In conclusion, we have used MCM-41-SO₃H as an effective nanocatalyst for the one-pot multicomponent synthesis of 1,8-dioxo-9-aryl decahydroacridine derivatives. This catalyst is highly efficient, easily available, economical, and requires mild reaction condition. The products were also formed in excellent yields with short reaction times. This method offers several advantages, such as omitting toxic solvents or catalyst, very simple work-up and needs no chromatographic method for purification of the products. The starting materials are also inexpensive and commercially available.

EXPERIMENTAL

General remarks. Melting points were recorded on a Buchi B-540 apparatus. IR spectra were recorded on an ABB Bomem Model FTLA200-100 instrument. ¹H NMR and ¹³C NMR spectra were measured on a Bruker DRX-300 spectrometer, at 300 and 75 MHz, using TMS as an internal standard. Chemical shifts (δ) were reported relative to TMS, and coupling

 Table 1

 Comparison of the amount of the catalyst and yields for the synthesis of 4k.

Table 3
The effect of reaction temperature for the synthesis of $4k$ in the
presence of 0.005-g catalyst.

synthesis of 4k.					
Amount of optalizat (a)	Time (min)	Viald (01)	Temperature (°C)	Time (min)	Yield (%)
Amount of catalyst (g)	Time (mm)	1 leiu (%)	80	35	82
_	55	80	90	25	86
0.001	15	80	100	25	90
0.003	15	85	110	10	98
0.005	10	95	116	15	98

MCM-41-SO₃H as a Nanoreactor for the One-Pot, Solvent-Free Synthesis of 1,8-Dioxo-9-aryl Decahydroacridines

Product	Ar	Time	Yield ^a (%)	M.P. ($^{\circ}$ C) found	M.P. (°C) reported
4a	2,3-Di-Cl ₂ -C ₆ H ₄ -	10	80	>323	_
4b	4-Acetamid—C ₆ H ₄ —	15	75	341-342	331-333 [14]
4c	$4-CN-C_6H_4-$	25	87	328-330	324-326 [14]
4d	$4-Bn-O-C_6H_4-$	15	94	165–167	_
4e		110	60	296–298	_
4f		20	98	>334	_
4g		20	97	305–307	-
4h	2 4-Di-Cl-C.H.	15	88	>321	>321 [15]
4i	$2-C = C_{c} H_{4}$	10	96	309-310	231-233 [16]
-j 4k	$4-C = C_{0} + C_{0}$	10	95	303-305	300-302 [17]
41	$4-Br-C_{c}H_{4}$	10	92	330-332	>300 [17]
4m	$4-OCH_2-C_2H_4-$	10	88	311-313	274-275 [3(b)]
4n	4-CH2-CCH4-	20	88	332	>300 [18]
40	3-OH-C/H4-	15	82	>302	>300 [19]
4n	4-OH-CcH4-	15	61	>302	>300 [18]

 Table 4

 The reaction time and the yield (%) of 1.8-dioxo-9-arvl decabydroacridines product

^a Isolated yield.

constants (J) were reported in hertz (Hz). Mass spectra were recorded on a Shimadzu QP 1100 EX mass spectrometer with 70-eV ionization potential.

Synthesis and functionalization of MCM-41. In the present work, MCM-41 was modified to covalently anchor sulfonic acid on the inside surface of channels to provide the silica-supported material with Brönsted acid properties. The MCM-41 was synthesized according to the previously described method using cetyltrimethylammonium bromide (CTMABr), as the templating agent [13]. The surfactant template was then removed from the synthesized material by calcination at 540°C for 6 h.

MCM-41 was modified using a 100-mL suction flask equipped with a constant-pressure dropping funnel containing chlorosulfonic acid (81.13 g and 0.7 mol) and a gas inlet tube for conducting HCl gas over an adsorbing solution. Then, 60.0 g of MCM-41 was charged into it and chlorosulfonic acid was added dropwise over a period of 30 min at room temperature. HCl gas evolved from the reaction vessel immediately. After completion of addition, the mixture was shaken for 30 min, and the white solid (MCM-41-SO₃H) was obtained (115.9 g).

General procedure for the synthesis of 1,8-dioxo-9-aryl decahydroacridines. A mixture of aldehyde (1 mmol), dimedone (2 mmol), ammonium acetate (3 mmol), MCM-41-SO₃H (0.005 g) were mixed and heated in a paraffin bath at 110° C for different periods of time (Table 4). After completion of the reaction (monitored by TLC; petroleum ether and EtOAc, 1:2), excess ammonium acetate was washed away by water. Subsequently, products were crystallized from ethanol.

The spectral data of some representative products. 3,3, 6,6-Tetramethyl-9-(2,3-dichlorophenyl)-1,2,3,4,5,6,7,8,9,10-decahydroacridin-1,8-dione (4a). Yellow solid, M.P. >322°C (KBr, cm⁻¹) V_{max} : 3286, 3178, 3049, 2957, 2859, 1647, ¹H NMR (300 MHz; DMSO-d_6): $\delta = 0.84$ (6H, s, 2CH₃), 0.99 (6H, s, 2CH₃), 1.92 (2H, d, J = 16.0 Hz, 2CH), 0.14 (2H, d, J = 16.1 Hz, 2CH), 2.28 (2H, d, J = 17 Hz, 2CH), 2.45 (2H, d, J = 17 Hz, 2CH), 2.45 (2H, d, J = 17 Hz, 2CH), 5.14 (1H, s, 1CH), 7.13–7.31 (3H, m, CH), 9.37 (1H, s, NH), ¹³C NMR (75 MHz, DMSO-d_6): 26.35, 29.01, 31.95, 33.67, 40.16, 50.16, 110.87, 126.98, 127.56, 129.05, 130.54, 131.41, 147.18, 149.78, 194.17. MS (EI): m/e = 417 (4) [M+], 382 (43), 272 (100), 256 (2), 216 (6), 188 (8), 160 (3), 144 (3), 109 (2), 83 (6), 77 (5), 55 (6).

N-(4-(1,2,3,4,5,6,7,8,9,10-Decahydro-3,3,6,6-tetramethyl-1,8dioxoacridin-9yl)phenyl)acetamide (4b). Yellow solid, M.P. $341-342^{\circ}$ C, (KBr, cm⁻¹) V_{max} : 3471, 3306, 3038, 2951, 1615, ¹H NMR (300 MHz; CDCl₃): $\delta = 0.85$ (6H, s, 2CH₃), 0.99 (6H, s, 2CH₃), 1.99 (3H, s, CH₃), 1.94–2.49 (8H, m, 4CH₂), 4.74 (1H, s, CH), 7.04 (2H, d, J = 8.48 Hz, 2CH), 7.31 (2H, d, J = 8.4 Hz, 2CH), 9.23(1H, s, NH). ¹³C NMR (75 MHz, CDCl₃): 23.82, 25.44, 29.07, 32.10, 32.2, 38.66, 39.22, 39.50, 39.78, 40.05, 50.25, 11.50, 118.52, 127.88, 136.72, 142.08, 149.11, 167.88, 194.34 MS (EI): m/e = 406 (8) [M+], 405 (5), 377 (5), 272 (100), 102 (12), 43 (29).

3,3,6,6-Tetramethyl-9-(4-cyanophenyl)-1,2,3,4,5,6,7,8,9,10decahydroacridin-1,8-dione(4c). Yellow solid, M.P. 328– 330°C , (KBr, cm⁻¹) V_{max} :3327, 3234, 3080, 2957, 2233, 1642, ¹H NMR (300 MHz; CDCl₃): $\delta = 0.84$ (6H, s, 2CH₃), 0.99 (6H, s, 2CH₃), 1.98 (2H, d, J = 16 Hz, 2CH), 2.17 (2H, d, J = 16 Hz, 2CH), 2.33 (2H, d, J = 17 Hz, 2CH), 2.45 (2H, d, J = 17 Hz, 2CH), 4.85 (1H, s, CH), 7.33 (2H, d, J = 8.2 Hz, 2CH), 7.63 (2H, d, J = 18 Hz, 2CH), 9.40 (1H, s, NH). ¹³C NMR (75 MHz, CDCl₃): 26.44, 28.93, 32.08, 33.82, 38.66, 39.21, 39.77, 40.05, 50.04, 105.27, 110.44, 118.94, 128.67, 131.53, 149.87, 152.40, 194.28 MS (EI): *m/e* = 374 (9) [M+], 273 (25), 272 (100), 271 (40), 140 (17), 102 (15), 83 (27).

3,3,6,6-Tetramethyl-9-(4-(benzyloxy)phenyl)-1,2,3,4,5,6,7,8, 9,10-decahydroacridin-1,8-dione (4d). Yellow solid, M.P.165– 167°C, (KBr, cm⁻¹) V_{max} : 3604, 3352, 3286, 3029, 2952, 2859, 1611, ¹H NMR (300 MHz; CDCl₃): $\delta = 0.83$ (6H, s, 2CH₃), 0.95 (6H, s, 2CH₃), 2–2.30 (8H, m, 4CH₂), 4.85(2H, s, CH₂), 4.85 (2H, s, CH₂), 5.06 (1H, s, CH), 6.80 (2H, d, J =8.63 Hz, 2CH), 7.26 (2H, d, J = 8.65 Hz, 2CH), 7.31 (5H, m, 5CH), 8.30 (1H, s, NH). ¹³C NMR (75 MHz, CDCl₃): 27.07, 29.52, 32.54, 32.69, 40.48, 50.87, 69.84, 113.15, 114.09, 127.67, 127.87, 128.46, 128.91, 136.97, 139.41, 149.44, 156.98, 196.18 MS (EI): m/e = 455 (48) [M+], 364 (12), 272 (100), 91 (83), 65(17).

3,3,6,6-Tetramethyl-9-(anthracen-9-yl)-1,2,3,4,5,6,7,8,9,10decahydroacridin-1,8-dione (4e). Yellow solid, M.P = 296– 298°C (KBr, cm⁻¹) V_{max} : 3346, 3044, 2952, 1649, 1596, ¹H NMR (300 MHz; DMSO- d_6): δ = 0.66 (6H, s, 2CH₃), 0.97 (6H, s, 2CH₃),1.73 (2H, d, J = 16.3 Hz, 2CH), 2.05 (2H, d, J= 16.3 Hz, 2CH), 2.33 (2H, d, J = 16.9 Hz, 2CH), 2.51 (2H, d, J = 16.9 Hz, 2CH), 6.42 (1H, s, 1CH), 7.33 (2H, m, 2CH), 7.48 (2H, m, 2CH), 7.96 (2H, m, CH), 8.26 (1H, d, J = 8.6 Hz, CH), 8.34 (1H, s, 1CH), 9.11 (1H, d, J = 8.6 Hz, CH), 9.59 (1H, s, NH). ¹³C NMR (75 MHz, DMSO- d_6): 26.28, 29.12, 30.02, 31.56, 40.38, 50.23, 112.72, 124.00, 124.73, 126.25, 131.19, 139.73, 148.89, 194.46, MS (EI): m/e = 449 (24), 432 (4) [M+], 365 (2), 272 (71), 215 (36), 178 (100).

3,3,6,6-Tetramethyl-9-(naphthalen-2-yl)-1,2,3,4,5,6,7,8,9,10decahydroacridin-1,8-dione (4f). Yellow solid, M.P > 334° C (KBr, cm⁻¹) V_{max} : 3291, 3173, 3044, 2952, 2854, 1647, ¹H NMR (300 MHz; DMSO- d_6): $\delta = 0.84$ (6H, s, 2CH₃), 1.00 (6H, s, 2CH₃), 1.96 (2H, d, J = 16.1 Hz, 2CH), 2.18 (2H, d, J = 16.1 Hz, 2CH), 2.35 (2H, d, J = 17 Hz, 2CH), 2.48 (2H, d, J = 16.8 Hz, 2CH), 5.54 (1H, s, CH), 7.36–7.43 (3H, m, 3CH), 7.59 (1H, s, 1CH), 7.69–7.77 (3H, m, 3CH), 9.35 (1H, s, NH). ¹³C NMR (75 MHz, DMSO- d_6): 26.38, 29.13, 32.14, 33.28, 40.35, 50.24, 111.28, 125.06, 125.57, 125.70, 126.83, 127.09, 127.22, 127.54, 131.53, 132.72, 144.57, 149.46, 194.43 MS (EI): m/e = 399 (24) [M+], 382 (6), 314 (3), 272 (100), 256 (5), 216 (6), 188 (8), 127 (12), 77 (5).

3,3,6,6-Tetramethyl-9-(naphthalen-1-yl)-1,2,3,4,5,6,7,8,9,10decahydroacridin-1,8-dione (4g). Yellow solid, M.P. 305– 307°C, (KBr, cm⁻¹) V_{max} :3512, 3301, 3203, 3065, 2962, 2870, 1653, 1622, 1478 ¹H NMR (300 MHz; CDCl₃): $\delta = 0.81$ (6H, S, 2CH₃),1.00 (6H, s, 2CH₃), 1.86 (2H, d, J = 16.2 Hz, 2CH), 2.14 (2H, d, J = 16.1 Hz, 2CH), 2.35 (2H, d, J = 17.04 Hz, 2CH), 2.51 (2H, d, J = 16.7 Hz, 2CH), 5.5 (1H, s, CH),7.2 (1H, d, J = 8.2 Hz, 1CH), 7.4 (1H, d, J = 7.3 Hz, 1CH), 7.5 (1H, d, J = 7.6 Hz, 1CH), 7.6 (1H, d, J = 7.7 Hz, 1CH),7.8 (1H, s, NH).¹³C NMR (75 MHz, DMSO- d_6):18.55, 26.26, 29.15, 32.05, 50.18, 56.01, 113.16, 124.82, 125.34, 125.97, 126.12, 127.46, 132.76, 148.86, 194.47, MS (EI): m/e = 399(140), 382 (2), 314 (4), 272 (100), 127 (42), 77 (16), 41 (23).

3,3,6,6-Tetramethyl-9-(2-chlorophenyl)-1,2,3,4,5,6,7,8,9,10decahydroacridin-1,8-dione(4j). Yellow solid, M.P. 309– 310°C (KBr, cm⁻¹) V_{max} : 3286, 3198, 3055, 2957, 2859,1647, 1617 ¹H NMR (300 MHz; DMSO- d_6): $\delta = 0.86$ (6H, s, 2CH₃), 0.89 (6H, s, 2CH₃), 1.99 (2H, d, J = 9.55 Hz, 2CH), 2.17 (2H, d, J = 8.07 Hz, 2CH), 2.33 (2H, d, J = 7.03 Hz, January 2012

MCM-41-SO₃H as a Nanoreactor for the One-Pot, Solvent-Free Synthesis of 1,8-Dioxo-9-aryl Decahydroacridines

2CH), 2.45 (2H, d, J = 8.54 Hz, 2CH), 4.77 (1H, s, CH), 7.12–7.29 (4H, m, 4CH), 9.34 (1H, s, NH). ¹³C NMR (75 MHz, DMSO- d_6): 25.35, 29.00, 32.11, 33.04, 50.10, 110.80, 120.88, 126.55, 128.31, 129.88, 130.45, 149.63, and 194.33.

Acknowledgments. The authors gratefully acknowledge the K. N. Toosi University of Technology Research Council for financial support.

REFERENCES AND NOTES

[1] Janis, R. A.; Silver, P. J.; Triggle, G. J. Adv Drug Res 1987, 16, 309.

[2] Mikata, Y.; Yokoyama, M.; Mogami, K.; Kato, M.; Okura, I.; Chikira, M.; Yano, S. Inorg Chim Acta 1998, 279, 51.

[3] (a) Chorvat, R. J.; Rorig, K. J. J Org Chem 1988, 53, 5779;
(b) Martin, N.; Quinteiro, M.; Seoane, C.; Soto, L.; Mora, A.; Suarez, M.; Ockoa, E.; Morals, A. J Heterocyl Chem 1995, 32, 235;
(c) Suarez, M.; Loupy, A.; Salfran, E.; Moran, L.; Rolando, E. Heterocycles 1999, 51, 21.

[4] Das, B.; Thirupathi, P.; Mahender, I.; Reddy, V. S.; Rao, Y. K. J Mol Catal A: Chem 2006, 247, 233.

[5] Chebanov, V. A.; Saraev, V. E.; Kobzar, K. M.; Desenko, S. M.; Orlov, V. D.; Gura, E. A. Chem Heterocycl Comp 2004, 40, 475.

[6] Jin, T. S.; Zhang, J. S.; Guo, T. T.; Wang, A. Q.; Li, T. S. Synthesis 2004, 2001.

[7] Kresge, C. T.; Leonowicz, M. E.; Roth, W. J.; Vartuli, J. C.; Beck, J. S. Nature 1992, 359, 710.

[8] Zhang, W.; Pauly, T. R.; Pinnavaia, T. J. Chem Mater 1997, 9, 2491.

[9] Galarneau, A.; Desplantier-Giscard, D.; Di Renzo, F.; Fajula, F. Catal Today 2001, 68, 191.

[10] Gusev, V.Y.; Feng, X.; Bu, Z.; Haller, G. L.; O'Brien, J. A. J Phys Chem 1996, 100, 1985.

[11] Hoffmann, F.; Cornelius, M.; Morell, J.; Fröba, M. Angew Chem Int Ed 2006, 45, 3216.

[12] Rostamizadeh, S.; Amani, A. M.; Mahdavinia, G. H.; Amiri, G.; Sepehrian, H. Ultrason Sonochem 2010, 17, 306.

[13] Sepehrian, H.; Yavari, R.; Waqif-Husain, S.; Ghannadi-Maragheh, M. Separ Sci Tech 2008, 43, 3269.

[14] Balalaie, S.; Chadegani, F.; Darviche, F.; Bijanzadeh, H. R. Chin J Chem 2009, 27, 1953.

[15] Li, Y-L.; Zhang, M-M.; Wang, X-Sh.; Shi, D-Q.; Tu, Sh-J.; Wei, X-Y.; Zong, Z-M. J Chem Res 2005, 600.

[16] Suárez, M.; Loupy, A.; Salfrán, E.; Morán, L.; Rolando, E. Heterocycles 1999, 51, 21.

[17] Bakibaev, A. A.; Filimonov, V. D. Zh Org Khim 1991, 27, 859.

[18] Wang, X. S.; Shi, D. Q.; Zhang, Y. F.; Wang, S. H.; Tu, S. J. Chin J Org Chem 2004, 24, 430.

[19] Wang, X-Sh.; Zhang, M-M.; Shi, D-Q.; Tu, S-J.; Wei, X-Y.; Zong, Z-M. J Chem Res 2006, 719.